
Programming With Global Arrays
and ARMCI

Vinod Tipparaju
Pacific Northwest National Laboratory

Jarek Nieplocha
Pacific Northwest National Laboratory

Overview

❚ Focus on two related tools
❙ Global arrays 70%
❙ ARMCI 30%

❚ Tool overview
❚ Advantages and limitations
❚ Example
❚ Hands-on session

Global Arrays Overview

❚ shared memory model in context
of distributed dense arrays

❚ complete environment for parallel
code development

❚ compatible with MPI
❚ data locality control similar to

distributed memory/message
passing model

single, shared data structure/ global indexing
e.g., A(4,3) rather than buf(7) on task 2

Physically distributed data

Global address space &
One-sided communication

(0xf5670,P0)

(0xf32674,P5)

P0 P1 P2

collection of address spaces
of processes in a parallel job
global address: (address, pid)

message passing

P1P0
receive send

But not

P1P0
put

one-sided communication

Communication model

hardware examples: Cray T3E, Fujitsu VPP5000
language support: Co-Array Fortran, UPC
library support: Cray SHMEM, MPI-2, ARMCI

Global Array Model of Computations

compute/update

local memorylocal memory

Shared Object

copy
to

local m
em

ory

1-sided
communication

get

Shared Object

co
py

to
sh

ar
ed

ob
je

ct

local memory

1-sided
communication

put

Core Capabilities

❚ Distributed array library
❙ dense arrays 1-7 dimensions
❙ three data types: integer, double precision, double complex
❙ global rather than per-task view of data structures
❙ user control over data distribution: regular and irregular

❚ Operations
❙ collective on whole or sections of arrays

❘ e.g., C(4:20,1:5) = A(1:17,2:6) + 0.5* C(4:20,2:6)

❙ noncollective, 1-sided
❘ put, get, accumulate, scatter, gather, locks

❙ interfaces to linear algebra libraries e.g., ScaLapack, PeIGS

Language Interfaces

❚ Mixed language support
❙ Fortran and C
❙ arrays created in one language available through the others
❙ native view of the data layout

❚ Object oriented class library interfaces
❙ C++, Python
❙ implemented on top of GA C interface

❚ Number of available operations: 115

nganganganga_create_ghosts(type, _create_ghosts(type, _create_ghosts(type, _create_ghosts(type, ndimndimndimndim, dims, width,array_name, chunk, g_a), dims, width,array_name, chunk, g_a), dims, width,array_name, chunk, g_a), dims, width,array_name, chunk, g_a)
character*(*) array_name: Unique character string
integer type: Data type (MT_DBL, MT_INT, MT_DCPL)
integer ndim: Number of array dimensions
integer dims(ndim): Vector of array dimensions
integer width(ndim): Vector of ghost cell widths

integer chunk(ndim): Vector of minimum data
dimensions

on each processor.
integer g_a: Integer handle for future references

Traditional Global Array
Global Array with Ghost Cells

New Capability - Ghost Cells

First sequence of updates Second sequence of updates

Shift Algorithm

❚ Requires 2D messages to update ghost cells
❚ subroutine ga_update_ghosts(g_a)
❚ logical function ga_update3_ghosts(g_a)

Standard Update Algorithm

❚ Requires 3D-1 messages to update ghost cells
❚ logical function ga_update2_ghosts(g_a)

How does GA work?

Message Passing
process creation,

run-time environment

ARMCI
portable 1-sided communication

put,get, locks, etc

distributed arrays layer
memory management, index translation

application interfaces
Fortran 77, C, C++, Python

system specific resources

Global Array Communication via ARMCI

ARMCI_PutS

Application

Global Array
Library

Transport Layer

node I

Active Messages

node K

ga_put(x,y)

ARMCI handler

Interrupt

ARMCI
Library

Other protocols also used: remote memory copy, sockets, threads, shared memory

Interoperability

❚ Designed to be expandable by providing
interfaces to third party software
❙ application driven requirement (needs for

solvers, FFT, ...)
❙ message-passing libraries
❙ GA provides a set of operations exposing

❘ data in global arrays on individual processes
❘ memory layout
❘ array distribution information and process

mapping

Application

GA
interface

native
GA ops 3rd party

software
3rd party
software

call ga_diag_std(g_a,ev)

ACTS tools interoperable with GA

❚ linear algebra: ScaLAPACK
❘ interfaces to included in GA to multiple Scalapack operations
❘ example: to solve a linear system using LU factorization user calls
❘

call ga_lu_solve(g_a, g_b)

instead of

call pdgetrf(n,m, locA, p, q, dA, ind, info)

call pdgetrs(trans, n, mb, locA, p, q, dA, dB, info)

❚ PDE solvers: PETSc

❚ computational steering: CUMULUSV

Global Array Example

❚ Fock matrix construction
❚ O(N4) parallelism in (ij|kl) generation - computationally

intensive
❚ O(N2) size data objects - replicate or distribute
❚ Case where task parallelism does not map to underlying

data (cf. domain decomposition).

Fkl += (ij|kl)Dij

Distributed-data Fock construction

density fock

remote get remote accumulate

(ij|kl)

local computation

global
memory

GA and other models
(biased perspective of a developer)

Shared
memory

Message
passing

MPI-2 one-sided Global Arrays

Data view shared distributed distributed distributed or shared

Access to data simplest
(a=b)

Hard
(send-receive)

moderate
(MPI_Win_Start/

MPI_Win_Post/MPI_Put/
MPI_Win_Complete)

simple
(ga_put/get)

Data locality
information

obscured explicit explicit easily availab le
(ga_disitribution/

ga_locate)
Scalable
performance

limited very good unknown
(limited availab ility)

very good

Application guidelines

When could GA be useful?
❙ dense distributed arrays array framework needed
❙ irregular communication patterns
❙ need one-sided access to shared data structures

When not to use it?
❙ when different data structures needed
❙ regular, systolic communication patterns (use MPI)
❙ need synchronization as a part of data transfer

ARMCI: a portable
1-sided communication library

❚ Functionality
❙ put, get, accumulate (also with noncontiguous interfaces)
❙ atomic read-modify-write, mutexes and locks
❙ memory allocation operations
❙ fence operations

❚ Characteristics
❙ simple progress rules - truly one-sided
❙ operations ordered w.r.t. target (ease of use)
❙ less restrictive model and higher performance than MPI-2

❚ Applications
❙ distributed array libraries: Global Arrays(PNNL), Adlib (U.Syracuse)
❙ GPSHMEM - generalized portable Cray SHMEM library (Ames,PNNL)

Vector API

Most general API
❙ based on the I/O vector API (Unix readv/writev)
❙ sets of equaly-sized data segments

int ARMCI_PutV(armci_giov_t dscr_arr[], int arr_len,int
proc)

typedef struct {

void *src_ptr_ar[];

void *dst_ptr_ar[];

int bytes;

int ptr_ar_len;

} armci_giov_t;

src_ptr_ar[0]

src_ptr_ar[2]

dst_ptr_ar[0]

dst_ptr_ar[1]

dst_ptr_ar[2]

src_ptr_ar[1]

Fortran layout

Strided API

Can handle arbitrary N-dimensional array sections
int ARMCI_PutS(src_ptr, src_stride_ar,

dst_ptr, dst_stride_ar, count,
stride_levels, proc)

src_ptr

count[0]

count[1]

stride_levels = 1

s
r
c
_
s
t
r
i
d
e
_
a
r
[
0
]

dst_ptr

d
s
t
_
s
t
r
i
d
e
_
a
r
[
0
]

Fortran layout

OPTIMIZATIONS TO ARMCI

Message Passing
process creation,

run-time environment

ARMCI
portable 1-sided communication

put,get, locks, etc

distributed arrays layer
memory management, index translation

application interfaces
Fortran 77, C, C++, Python

system specific resources

Focus

OPTIMIZATIONS TO ARMCI

❚ Optimized ARMCI_PutS operation, Additional features
include
❙ Efficient buffer management with pipelining
❙ Adaptive sequencing of transmission buffers for optimum

performance

❚ Optimized ARMCI_GetS operation, Additional features
include
❙ Dynamic determination of transmission parameters
❙ Pipelined for medium to large messages
❙ Current research on a model for Adaptive pipelining

Using ARMCI directly

When to use it?
❚ Need 1-sided communication w/o the GA infrastructure
❚ programmer manages distributed data structures

Advantages
❚ Good performance

❙ e.g., 5uS latency, 320MB/s bandwidth on the NERSC Cray T3E

❚ Simple programming model (unlike MPI-2 1-sided)
Limitations

❚ Requires a message passing library to run (MPI,PVM,TCGMSG)

❚ Only C interfaces exist
❚ Memory allocation via ARMCI_Malloc

Where do I start?

❚ Webpage www.emsl.pnl.gov:2080/docs/global
❙ User Manual user.html (relative to the above address)
❙ C documentation Capi.html
❙ Fortran documentation Fapi.html

❚ Download version 3.1 from the same location

❚ ARMCI webpage
www.emsl.pnl.gov:2080/docs/parsoft/armci
❙ contains links to documentation and papers
❙ code distributed with Global Arrays

Features

❚ Separate data representation from task parallelism
❚ Size limited by global memory - not local memory
❚ Exploit full O(N4) parallelism
❚ Adaptable using dynamic task allocation
❚ Straightforward implementation

